Sponsored by:

Visit AMD Visit Supermicro

Performance Intensive Computing

Capture the full potential of IT

Supermicro H13 Servers Maximize Your High-Performance Data Center

Featured content

Supermicro H13 Servers Maximize Your High-Performance Data Center

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • AMD

The modern data center must be both highly performant and energy efficient. Massive amounts of data are generated at the edge and then analyzed in the data center. New CPU technologies are constantly being developed that can analyze data, determine the best course of action, and speed up the time to understand the world around us and make better decisions.

With the digital transformation continuing, a wide range of data acquisition, storage and computing systems continue to evolve with each generation of  a CPU. The latest CPU generations continue to innovate within their core computational units and in the technology to communicate with memory, storage devices, networking and accelerators.

Servers and, by default, the CPUs within those servers, form a continuum of computing and I/O power. The combination of cores, clock rates, memory access, path width and performance contribute to specific servers for workloads. In addition, the server that houses the CPUs may take different form factors and be used when the environment where the server is placed has airflow or power restrictions. The key for a server manufacturer to be able to address a wide range of applications is to use a building block approach to designing new systems. In this way, a range of systems can be simultaneously released in many form factors, each tailored to the operating environment.

The new H13 Supermicro product line, based on 4th Generation AMD EPYC™ CPUs, supports a broad spectrum of workloads and excels at helping a business achieve its goals.

Get speeds, feeds and other specs on Supermicro’s latest line-up of servers

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Supermicro Debuts New H13 Server Solutions Using AMD’s 4th-Gen EPYC™ CPUs

Featured content

Supermicro Debuts New H13 Server Solutions Using AMD’s 4th-Gen EPYC™ CPUs

Learn More about this topic
  • Applications:
  • Featured Technologies:

Last week, Supermicro announced its new H13 A+ server solutions, featuring the latest fourth-generation AMD EPYC™ processors. The new AMD “Genoa”-class Supermicro A+ configurations will be able to handle up to 96 Zen4 CPU cores running up to 6TB of 12-channel DDR5 memory, using a separate channel for each stick of memory.

The various systems are designed to support the highest performance-intensive computing workloads over a wide range of storage, networking and I/O configuration options. They also feature tool-less chassis and hot-swappable modules for easier access to internal parts as well as I/O drive trays on both front and rear panels. All the new equipment can handle a range of power conditions, including 120 to 480 AC volt operation and 48 DC power attachments.

The new H13 systems have been optimized for AI, machine learning and complex calculation tasks for data analytics and other kinds of HPC applications. Supermicro’s 4th-Gen AMD EPYC™ systems employ the latest PCIe 5.0 connectivity throughout their layouts to speed data flows and provide high network and cluster internetworking performance. At the heart of these systems is the AMD EPYC™ 9004 series CPUs, which were also announced last week.

The Supermicro H13 GrandTwin® systems can handle up to six SATA3 or NVMe drive bays, which are hot-pluggable. The H13 CloudDC systems come in 1U and 2U chassis that are designed for cloud-based workloads and data centers that can handle up to 12 hot-swappable drive bays and support the Open Compute Platform I/O modules. Supermicro has also announced its H13 Hyper configuration for dual-socketed systems. All of the twin-socket server configurations support 160 PCIe 5.0 data lanes.

There are several GPU-intensive configurations for another series of both 4U and 8U sized servers that can support up to 10 GPU PCIe accelerator cards, including the latest graphic processors from AMD and Nvidia. The 4U family of servers support both AMD Infinity Fabric Link and NVIDIA NVLink Bridge technologies so users can choose the right balance of computation, acceleration, I/O and local storage specifications.

To get a deep dive on H13 products, including speeds, feeds and specs, download this whitepaper from the Supermicro site: Supermicro H13 Servers Enable High-Performance Data Centers.

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

How the New EPYC CPUs Deliver System-on-Chip Electronics

Featured content

How the New EPYC CPUs Deliver System-on-Chip Electronics

CPU chipsets are not normally considered systems-on-chip (SoC) but the fourth generation of AMD EPYC processors incorporate numerous I/O functionality at a high level of integration.

Learn More about this topic
  • Applications:
  • Featured Technologies:
Typically, CPU chipsets are not normally considered systems-on-chip (SoC) but the fourth generation of AMD EPYC processors incorporate numerous I/O functionality at a high level of integration. Previous generations have delivered this functionality on external chipsets. The SoC design helps reduce power consumption, packaging costs and improve data throughput by reducing interconnection latencies.
 
The new EPYC processors have 12 DDR5 memory controllers – 50 percent more controllers than any other x86 CPU, which keeps up the higher memory demands of performance-intensive computing applications. As we mentioned in an earlier blog, these controllers also include inline encryption engines for supporting AMD’s Infinity Guard features, including support for an integrated security processor that establishes a secure root of trust and other security tasks.
 
They also include 128 or 160 lanes of PCIe Gen5 controllers, which also helps with higher I/O throughput of these more demanding applications. These support the same physical interfaces for Infinity fabric connectors and provide more remote memory access among CPUs at up to 36 GBps between servers. The new Zen 4 CPU cores can make use of one or two interfaces.
 
The PCIe Gen 5 I/O is supported in the I/O die with eight serializer/deserializer silicon controllers with one independent set of traces to support each port of 16 PCIe lanes.
 
 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

AMD’s Infinity Guard Selected by Google Cloud for Confidential Computing

Featured content

AMD’s Infinity Guard Selected by Google Cloud for Confidential Computing

Google Cloud has been working over the past several years with AMD on developing new on-chip security protocols. More on the release of the AMD EPYC™ 9004 series processors in this part three of a four-part series..

Learn More about this topic
  • Applications:
  • Featured Technologies:

 
 
Google Cloud has been working over the past several years with AMD on developing new on-chip security protocols that have seen further innovation with the release of the AMD EPYC™ 9004 series processors. These have a direct benefit for performance-intensive computing applications, particularly for supporting higher-density virtual machines (VMs) and using technologies that can protect data flows from leaving the confines of what Google calls confidential VMs as well as further isolating VM hypervisors. They offer a collection of N2D and C2D instances that support these confidential VMs.
 
“Product security is always our top focus,” said AMD CTO Mark Papermaster. “We are continuously investing and collaborating in the security of these technologies.” 
 
Royal Hansen, VP of engineering for Google Cloud said: “Our customers expect the most trustworthy computing experience on the planet. Google and AMD have a long history and a variety of relationships with the deepest experts on security and chip development. This was at the core of our going to market with AMD’s security solutions for datacenters.”
 
The two companies also worked together on this security analysis.
 
Called Infinity Guard collectively, the security technologies theyv'e been working on involve four initiatives:
 
1. Secure encrypted virtualization provides each VM with its own unique encryption key known only to the processor.
 
2. Secure nested paging complements this virtualization to protect each VM from any malicious hypervisor attacks and provide for an isolated and trusted environment.
 
3. AMD’s secure boot along with the Trusted Platform Module attestation of the confidential VMs happen every time a VM boots, ensuring its integrity and to mitigate any persistent threats.
 
4. AMD’s secure memory encryption and integration into the memory channels speed performance.
 
These technologies are combined and communicate using the AMD Infinity Fabric pathways to deliver breakthrough performance along with better secure communications.
 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Understanding the New Core Architecture of the AMD EPYC 9004 Series Processors

Featured content

Understanding the New Core Architecture of the AMD EPYC 9004 Series Processors

AMD’s announcement of its fourth generation EPYC 9004 Series processors includes major advances in how these chipsets are designed and produced. Part 2 of 4.

Learn More about this topic
  • Applications:
  • Featured Technologies:
AMD’s announcement of its fourth generation EPYC 9004 Series processors includes major advances in how these chipsets are designed and produced for delivering the highest performance levels. These advances involve using a hybrid multi-die architecture.
 
This architecture makes use of two different production processes for cores and I/O pathways. The former makes use of five nanometer dies, while the latter uses six nanometer dies. Each processor package can have up to 12 CPU dies, each with eight 8 cores for a total of 96 cores in the maximum configuration. Each eight-core assembly has its own set of eight 8 dedicated 1 MB L2 caches, and the overall assembly can access a shared 32 MB L3 cache, as shown in the diagram below.
 
32 MB L3 cache image
 
 
 
 
 
 
 
 
 
 
 
In addition to these changes, AMD announced improvements called Zen 4 that involve boosting instructions-per-clock counts and overall clock- speed increases. AMD promises roughly 29 percent faster single-core CPU performance in Zen 4 relative to Zen 3, which were affirmed with Ars Technica’s tests earlier this fall. (Zen 3 chips used the older seven 7 nanometer dies.)
 
 
This configuration provides a great deal of flexibility in how the CPU, memory channels, and I/O paths are arranged. The multi-die setup can reduce fabrication waste and offer better parallel processing support. In addition, AMD EPYC processors are produced in single and dual socket configurations, with the latter offering more I/O pathways and dedicated PCIe generation 5 I/O connections.
 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

AMD Announces Fourth-Generation EPYC™ CPUs with the 9004 Series Processors

Featured content

AMD Announces Fourth-Generation EPYC™ CPUs with the 9004 Series Processors

AMD announces its fourth-generation EPYC™ CPUs. The new EPYC 9004 Series processors demonstrate advances in hybrid, multi-die architecture by decoupling core and I/O processes. Part 1 of 4.

Learn More about this topic
  • Applications:
  • Featured Technologies:
AMD very recently announced its fourth-generation EPYC™ CPUs.This generation will provide innovative solutions that can satisfy the most demanding performance-intensive computing requirements for cloud computing, AI and highly parallelized data analytic applications. The design decisions AMD made on this processor generation strirke a good balance among specificaitons, including higher CPU power and I/O performance, latency reductions and improvements in overall data throughput. This lets a single CPU socket address an increasingly larger world of complex workloads. 
 
The new AMD EPYC™ 9004 Series processors demonstrate advances in hybrid, multi-die architecture by decoupling core and I/O processes. The new chip dies support 12 DDR5 memory channels, doubling the I/O throughput of previous generations. The new CPUs also increase core counts from 64 cores in the previous EPYC 7003 chips to 96 cores in the new chips using 5-nanometer processes. The new generation of chips also increases the maximum memory capacity from 4TB of DDR4-3200 to 6TB of DDR5-4800 memory.
 
 
 
There are three major innovations evident in the AMD EPYC™ 9004 processor series:
  1. A  new hybrid multi-die chip architecture coupled with multi-processor server innovations and a new and more advanced Zen 4 instruction set along with support for an increase in dedicated L2 and shared L3 cache storage
  2. Security enhancements to AMD’s Infinity Guard
  3. Advances to system-on-chip designs that extend and enhance AMD Infinity switching fabric technology,
Taken together, the new AMD EPYC™ 9004 series processors can offer plenty of innovation and performance advantage. The new processors offer better performance per watt of power consumed and better per core performance, too.
 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Unlocking the Value of the Cloud for Mid-size Enterprises

Featured content

Unlocking the Value of the Cloud for Mid-size Enterprises

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • Microsoft Azure

Organizations around the world are requiring new options for their next-generation computing environments. Mid-size organizations, in particular, are facing increasing pressure to deliver cost-effective, high-performance solutions within their hyperconverged infrastructures (HCI). Recent collaboration between Supermicro, Microsoft Azure and AMD, leveraging their collective technologies, has created a fresh approach that lets enterprises maintain performance at a lower operational cost while helping to reduce the organization’s carbon footprint in support of sustainability initiatives. This cost-effective, 1U system (a 2U version is available) offers both power, flexibility and modularity in large-scale GPU deployments.

The results of the collaboration combine the latest technologies, supporting multiple CPU, GPU, storage and networking options optimized to deliver uniquely configured and highly scalable systems. The product can be optimized for SQL and Oracle databases, VDI, productivity applications and database analytics. This white paper explores why this universal GPU architecture is an intriguing and cost-effective option for CTOs and IT administrators who are planning to rapidly implement hybrid cloud, data center modernization, branch office/edge networking or Kubernetes deployments at scale.

Get the 7-page white paper that provides the detail to assess the solution for yourself, including the new Azure Stack HCI certified system, specifications, cost justification and more.

 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Enter Your Animation in Pixar’s RenderMan NASA Space Images Art Challenge

Featured content

Enter Your Animation in Pixar’s RenderMan NASA Space Images Art Challenge

For the first time, challengers can run their designs using thousands of AMD EPYC™ core CPUs, enabling artists to develop the most complex animations and the most amazing visualizations. “The contestants have access to this professional-grade render farm just like the pros. It levels the playing field,” said James Knight, the director of entertainment for AMD. “You can make scenes that weren’t possible before on your own PC,” he said.

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • Pixar

One of the biggest uses of performance-intensive computing is the creation of high-resolution graphic animations used for entertainment and commercial applications. To that end, AMD and Pixar Animation Studios have announced the ninth RenderMan Art Challenge, which is open to the public. The idea is to encourage creative types to use some of the same tools that professional graphic designers and animators use to build something based on actual NASA data.

 

The winners will be determined by a set of Pixar, NASA and Industrial Light and Magic judges. The projects must be submitted by November 15 and the winning entries will be announced at the end of November.

 

This year’s challenge provides access to the AMD virtual Azure virtual machines, letting contestants use the highest-performing compute instances. Contestants will be given entrance to The AMD Creator Cloud, a render farm powered by Azure HBv3 composed of high-performance AMD EPYC™ processors using AMD 3D V-Cache™ technology.

 

For the first time, challengers can run their designs using thousands of AMD EPYC™ core CPUs, enabling artists to develop the most complex animations and the most amazing visualizations. “The contestants have access to this professional-grade render farm just like the pros. It levels the playing field,” said James Knight, the director of entertainment for AMD. “You can make scenes that weren’t possible before on your own PC,” he said.

 

The topic focus for this year’s challenge is space-related, in keeping with NASA’s involvement. The challenge provides scientifically accurate 3D NASA models, including telescopes, space stations, suits and planets. One of the potential advantages: many of past contests have ended up working at Pixar. “The RenderMan challenge gives everyone a chance to learn new things and show their abilities and creativity. The whole experience was great," said Khachik Astvatsatryan, a previous RenderMan Challenge winner.

 

Dylan Sisson, a RenderMan digital artist at Pixar, said “With the advancements we are seeing in hardware and software, individual artists are now able to create images of ever-increasing sophistication and complexity. It is a great opportunity for challengers to unleash their creative vision with these state-of-the-art technologies."

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Register to Watch Supermicro's Sweeping A+ Launch Event on Nov. 10

Featured content

Register to Watch Supermicro's Sweeping A+ Launch Event on Nov. 10

Join Supermicro online Nov. 10th to watch the unveiling of the company’s new A+ systems -- featuring next-generation AMD EPYC™ processors. They can't tell us any more right now. But you can register for a link to the event by scrolling down and signing-up on this page.
Learn More about this topic
  • Applications:
  • Featured Technologies:

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Energy-Efficient AMD EPYC™ Processors Bring Significant Savings

Featured content

Energy-Efficient AMD EPYC™ Processors Bring Significant Savings

Cut electricity consumption by up to half with AMD's power-saviing EPYC™ processors.

Learn More about this topic
  • Applications:
  • Featured Technologies:
  • Featured Companies:
  • Ateme, DBS, Nokia

Nokia was able to target up to a 40% reduction in server power consumption using EPYC. DBS and Ateme each experienced a 50% drop in energy costs. AMD’s EPYC™ processors can provide big energy-saving benefits, so you can meet your most demanding application performance requirements and still provide planetary and environmental efficiencies.

For example: To provide a collection of 1,200 virtual machines, AMD would require 10 servers compared to 15 for those built using equivalent Intel CPUs. This translates into a 41% lower total cost of ownership over a three-year period, with a third less energy consumption, saving on carbon emissions too. For deep detail and links to case studies by the companies mentioned above. Find out how they  saved significantly on energy-costs while reducing their carbon footprints, check out the infographic.

 

Featured videos


Events




Find AMD & Supermicro Elsewhere

Related Content

Pages