Sponsored by:

Visit AMD Visit Supermicro

Performance Intensive Computing

Capture the full potential of IT

Validate, test and benchmark the latest AMD-powered servers with Supermicro JumpStart

Featured content

Validate, test and benchmark the latest AMD-powered servers with Supermicro JumpStart

Get a free test drive on cutting-edge Supermicro servers powered by the latest AMD CPUs and GPUs.

Learn More about this topic
  • Applications:
  • Featured Technologies:

How would you like free access to Supermicro’s first-to-market, high-end H14 servers powered by the latest AMD EPYC CPUs and Instinct GPUs?

Now it’s yours via your browser—and the Supermicro JumpStart program.

JumpStart offers you remote access to Supermicro servers. There, you can validate, test and benchmark your workloads. And assuming you qualify, using JumpStart is absolutely free.

While JumpStart has been around for some time, Supermicro has recently refreshed the program by including some of its latest H14 servers:

  • 8U server with eight AMD Instinct MI325X GPUs, dual AMD EPYC 9005 Series CPUs, 2TB of HBM3 memory (Supermicro model AS -8126GS-TNMR)
  • 2U server with dual AMD EPYC 9005 Series processors and up to 1.5TB of DDR5 memory (AS -2126HS-TN).
  • 1U cloud server with a single AMD EPYC 9005 Series processor (AS -1116CS-TN)

Supermicro has also updated JumpStart systems with its 1U E3.S all-Flash storage systems powered by a single AMD EPYC processor, so you can also test-drive the latest PCIe drives. Also, several of Supermicro’s H13 AMD-powered are available for remote access on JumpStart, as well.

How It Works

Getting started with JumpStart is easy:

Step 1: On the main JumpStart page, browse the available systems, then click the “get access” or “request access” button for the system you want to try. Then select your preferred system and time slot.

Step 2: Sign in. You can either login with your Supermicro single sign-on (SSO) account or create a new free account. Supermicro will then qualify your account and reach out with further instructions.

Step 3: When your chosen time arrives, secure access to your system. Most JumpStart sessions last for one week. If you need more time, that can often be negotiated with your Supermicro sales reps.

It's that simple.

Once you’re connected to a server via JumpStart, you can have up to three sessions open: one VNC (virtual network computing), one SSH (secure shell), and one IPMI (intelligent platform management interface).

JumpStart also protects your privacy. After your JumpStart trial is completed, the server and storage devices are manually erased. In addition, the BIOS and firmware are reflashed, and the operating system is re-installed with new credentials.

More protection is offered, too. A jump server is used as a proxy. This means that the server you’re testing can use the internet to get files, but it is not directly addressable via the internet.

That said, it’s recommended that you do not use the test servers for processing sensitive or confidential data. Instead, Supermicro advises the use of anonymized data only—mainly because the servers may follow security policies that differ from your own.

So what are you waiting for? Try out JumpStart and get free remote access to Supermicro’s cutting-edge servers powered by the latest AMD CPUs and GPUs.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Tech Explainer: What is agentic AI?

Featured content

Tech Explainer: What is agentic AI?

Find out how new artificial intelligence systems can make decisions and take actions autonomously—that is, without human intervention.

Learn More about this topic
  • Applications:
  • Featured Technologies:

We’re on the precipice of a major AI evolution. Welcome to the era of agentic AI.

The official definition of agentic AI is artificial intelligence capable of making autonomous decisions. That is, without human oversight or intervention.

You can imagine agentic AI as a robot on a mission. This robot has been designed to think like a human. Give it a goal, and the robot can then evaluate the ongoing situation, reacting intelligently in pursuit of that defined goal.

For example, imagine you’re planning a visit to wineries in California’s Napa Valley. A standard AI chatbot like ChatGPT could help you find the closest airport with car-rental agencies, identify which airlines fly there, and locate nearby hotels. But it would still be up to you to compare prices and actually make the reservations.

But what if instead, your robot could autonomously plan—and book!—the entire trip based on your preferences? For example, you might engage an agentic AI like AutoGPT by telling it something like this:

“I want to go to Napa Valley and visit wineries. I don’t want to spend more than $3,000. I prefer Chardonnay and Syrah wines. I once had a bad experience with American Airlines. It would be fun to drive a convertible. A 3-star hotel is fine as long as it’s got good reviews.”

The promise of agentic AI is that it would use that information to plan and book your trip. The agentic AI would find you the best flight, car and hotel by interacting with each company’s APIs or even their own agentic AI—here referred to as “other agents.” This is also known as machine-to-machine (M2M) communications.

Your robot agent could also make your reservations at vineyards with critically acclaimed Chardonnay and Syrah wines. And it might even plan your route using details as granular as the range of the discounted rag-top Ford Mustang it found near the airport.

Agentic AI for Organizations

This personal Napa Valley scenario is one of those nice-to-have kinds of things. But for organizations, agentic AI has far more potential. This technology could eventually transform every major industry and vertical market.

For example, a retailer might use agentic AI to autonomously adjust a product’s price based on the current inventory level, availability and competitive brands.

A manufacturer could use an AI agent to manage procurement and create dynamic forecasting, saving the company time and money.

And in the public sector, agentic AI could help a government agency better respond to public-health emergencies like the next global pandemic. The AI could model viral transmission patterns, then send additional resources to the areas that need them the most.

In each case, we’re talking about the potential for a tireless virtual robot workforce. Once you give an agentic AI a mission, it can proceed without any further human intervention, saving you countless hours and dollars.

Training: Standard AI vs. Agentic

For all types of AI, one big issue is training. That’s because an AI system on its own doesn’t really know anything. To be useful, it first has to be trained.

And with training, there’s a huge difference between the way you train a standard AI and the way you train an AI that’s agentic. It’s as dramatic as the difference between programming a calculator and onboarding a new (human) intern.

With a standard AI chatbot, the system is trained to answer questions based on a relatively narrow set of parameters. To accomplish this, engineers provide massive amounts of data via large language models (LLMs). They then train the bot through supervised learning. Eventually, inferencing enables the AI to make predictions based on user input and available data.

By contrast, training an agentic AI focuses on memory, autonomy, planning and using available tools. Here, LLMs are paired with prompt engineering, long-term memory systems and feedback loops. These elements work together to create a type of intelligent thought process—the kind you hope your new intern is capable of!

Then, at the inferencing stage, the AI does far more than just answer questions. Instead, agentic AI inferencing enables the system to interpret goals, create plans, ask for help and, ultimately, execute tasks autonomously.

Nuts and Bolts

The IT infrastructure that powers agentic AI is no different from the horsepower behind your average chatbot. There’s just a lot more of it.

That’s because agentic AI, in comparison with standard AI, makes more inference calls, reads and writes more files, and queries more APIs. It also engages a persistent memory. That way, the AI can continuously access collected information as it works towards its goals.

However, having a slew of GPUs and endless solid-state storage won’t be enough to sustain what will likely be the meteoric growth of this cutting-edge technology. As agentic AI becomes more vital, IT managers will need a way to feed the fast-growing beast.

Supermicro’s current H14 systems—they include the GPU A+ Server—are powered by AMD EPYC 9005-series processors and fitted with up to 8 AMD Instinct MI325X Accelerators. Supermicro has designed these high-performance solutions to tackle the most challenging AI workloads.

Looking ahead, at AMD’s recent “Advancing AI” event, CEO Lisa Su introduced Helios, AMD’s vision for agentic AI infrastructure. Su said Helios will deliver the compute density, memory bandwidth, performance and scale-out bandwidth needed for the most demanding AI workloads. What’s more, Helios will come packaged as a ready-to-deploy AI rack solution that accelerates users’ time to market.

Helios, planned for release in 2026, will use several forthcoming products: AMD Instinct MI400 GPUs, AMD 6th Gen EPYC CPUs, and AMD Pensando “Vulcano” network interface cards (NICs). All will be integrated in an OCP-compliant rack that supports both UALink and Ultra Ethernet. And eventually, Helios will appear in turnkey systems such as the Supermicro H14 series.

What’s Next?

What else does agentic AI have in store for us? While no one has a crystal ball, it’s reasonable to assume we’ll see increasingly sophisticated agents infiltrating nearly every aspect of our lives.

For instance, agentic AI could eventually develop the ability to work autonomously on long-term, multifaceted projects—everything from advertising campaigns to biomedical research.

Agentic AI is also likely to learn how to debug its own logic and develop new tools. These capabilities are referred to by the pros as self-reflection and self-improvement, respectively.

One day in the not-too-distant future, we could even see massive teams of specialized AI agents working together under a single robotic project manager.

Think this is starting to sound like “The Matrix”? You ain’t seen nothin’ yet.

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Deploy GenAI with confidence: Validated Server Designs from Supermicro and AMD

Featured content

Deploy GenAI with confidence: Validated Server Designs from Supermicro and AMD

Learn about the new Validated Design for AI clusters from Supermicro and AMD. It can save you time, reduce complexity and improve your ROI.

Learn More about this topic
  • Applications:
  • Featured Technologies:

The task of designing, building and connecting a server system that can run today’s artificial intelligence workloads is daunting.

Mainly, because there are a lot of moving parts. Assembling and connecting them all correctly is not only complicated, but also time-consuming.

Supermicro and AMD are here to help. They’ve recently co-published a Verified Design document that explains how to build an AI cluster. The PDF also tells you how you can acquire an AMD-powered Supermicro cluster for AI pre-built, with all elements connected, configured and burned in before shipping.

Full-Stack for GenAI

Supermicro and AMD are offering a fully validated, full-stack solution for today’s Generative AI workloads. The system’s scale can be easily adjusted from as few as 16 nodes to as many as 1,024—and points in between.

This Supermicro solution is based on three AMD elements: the AMD Instinct MI325X GPU, AMD Pensando Pollara 400 AI network interface card (NIC), and AMD EPYC CPU.

These three AMD parts are all integrated with Supermicro’s optimized servers. That includes network cabling and switching.

The new Validated Design document is designed to help potential buyers understand the joint AMD-Supermicro solution’s key elements. To shorten your implementation time, the document also provides an organized plan from start to finish.

Under the Cover

This comprehensive report—22 pages plus a lengthy appendix—goes into a lot of technical detail. That includes the traffic characteristics of AI training, impact of large “elephant” flows on the network fabric, and dynamic load balancing. Here’s a summary:

  • Foundations of AI Fabrics: Remote Direct Memory Access (RDMA), PCIe switching, Ethernet, IP and Border Gateway Protocol (BGP).
  • Validated Design Equipment and Configuration: Server options that optimize RDMA traffic with minimal distance, latency and silicon between the RDMA-capable NIC (RNIC) and accelerator.
  • Scaling Out the Accelerators with an Optimized Ethernet Fabric: Components and configurations including the AMD Pensando Pollara 400 Ethernet NIC and Supermicro’s own SSE-T8196 Ethernet switch.
  • Design of the Scale Unit—Scaling Out the Cluster: Designs are included for both air-cooled and liquid-cooled setups.
  • Resource Management and Adding Locality into Work Placement: Covering the Simple Linux Utility for Resource Management (SLURM) and topology optimization including the concept of rails.
  • Supermicro Validated AMD Instinct MI325 Design: Shows how you can scale the validated design all the way to 8,000 AMD MI325X GPUs in a cluster.
  • Storage Network Validated Design: Multiple alternatives are offered.
  • Importance of Automation: Human errors are, well, human. Automation can help with tasks including the production of detailed architectural drawings, output of cabling maps, and management of device firmware.
  • How to Minimize Deployment Time: Supermicro’s Rack Scale Solution Stack offers a fully integrated, end-to-end solution. And by offering a system that’s pre-validated, this also eases the complexity of multi-vendor integration.

Total Rack Solution

Looking to minimize implementation times? Supermicro offers a total rack scale solution that’s fully integrated and end-to-end.

This frees the user from having to integrate and validate a multi-vendor solution. Basically, Supermicro does it for you.

By leveraging industry-leading energy efficiency, liquid and air-cooled designs, and global logistics capabilities, Supermicro delivers a cost-effective and future-proof solution designed to meet the most demanding IT requirements.

The benefits to the customer include reduced operational overhead, a single point of accountability, streamlined procurement and deployment, and maximum return on investment.

For onsite deployment, Supermicro provides a turnkey, fully optimized rack solution that is ready to run. This helps organizations maximize efficiency, lower costs and ensure long-term reliability. It includes a dedicated on-site project manager.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Tech Explainer: What’s special about an AI server?

Featured content

Tech Explainer: What’s special about an AI server?

What’s in an AI server that a general-purpose system lacks?

Learn More about this topic
  • Applications:
  • Featured Technologies:

The Era of Artificial Intelligence requires its own class of servers, and rightly so. The AI tech that increasingly powers our businesses, finance, entertainment and scientific research is some of the most resource-intensive in history. Without AI servers, all this would grind to a halt.

But why? What’s so special about AI servers? And how are they able to power successive evolutions of large language models, generative AI, machine learning, and all the other AI-based workloads we’ve come to rely on day in and day out?

Put another way: What do AI servers have that standard servers don’t?

The answer can be summed up in a single word: More.

When it comes to AI servers, it’s all about managing a symphony. The musical instruments include multiple processors, GPUs, memory modules, networking hardware and expansion options.

Sure, your average general-purpose server has many similar components. But both the quantity and performance of each component is considerably lower than those of an AI server. That helps keep the price affordable, heat low, and workload options open. But it certainly doesn’t have the integrated GPU needed to run AI workloads.

Best of the Beasts

Supermicro specializes in the deployment of jaw-dropping power. The company’s newest 8U GPU Server (AS -8126GS-TNMR) is engineered to chew through the world’s toughest AI workloads. It’s powered by dual AMD EPYC processors and eight AMD Instinct MI350X or Instinct MI325X accelerators. This server can tackle AI workloads while staying cool and scaling up to meet increasing demand.

Keeping AI servers from overheating can be a tough job. Even a lowly, multipurpose business server kicks off a lot of heat. Temperatures build up around vital components like the CPU, GPU and storage devices. If that heat hangs around too long, it can lead to performance issues and, eventually, system failure.

Preventing heat-related issues in a single general-purpose server can be accomplished with a few heatsinks and small-diameter fans. But when it comes to high-performance, multi-GPU servers like Supermicro’s new 4U GPU A+ Server (AS -4126GS-NMR-LCC), liquid cooling becomes a must-have.

It’s also vital that AI servers be designed with expansion in mind. When an AI-powered app becomes successful, IT managers must be able to scale up quickly and without interruption.

Supermicro’s H14 8U 8-GPU System sets the standard for scalability. The H14 offers up to 20 storage drives and up to 12 PCI Express 5.0 (PCIe) x16 expansion slots.

Users can fill these high-bandwidth slots with a dizzying array of optional hardware, including:

  • Network Interface Cards (NICs) like the new AI-focused AMD AI NIC for high-speed networking.
  • NVMe storage to provide fast disk access.
  • Field Programmable Gate Array (FPGA) modules, which can be set up for custom computation and reconfigured after deployment.
  • Monitoring and control management cards. These enable IT staff to power servers on and off remotely, and also access BIOS settings.
  • Additional GPUs to aid in AI training and inferencing.
  • AI Accelerators. The AMD Instinct series is designed to tackle computing for AI, both training and inference.

A Different Class of Silicon

Hardware like the Supermicro GPU Server epitomizes what it means to be an AI server. That’s due in part to the components it’s designed to house. We’re talking about some of the most advanced processing tech available today.

As mentioned above, that tech comes courtesy of AMD, whose 5th Gen AMD EPYC 9005 series processors and recently announced AMD Instinct MI350 Series GPUs are powerful enough to tackle any AI workload.

AMD’s Instinct MI350 accelerators deliver a 4x generation-on-generation AI compute increase and a 35x generational leap in inferencing.

Say the word, and Supermicro will pack your AI Server with dual AMD EPYC processors containing up to 192 cores. They’ll install the latest AMD Instinct M1350X platform with 8 GPUs, fill all 24 DIMM slots with 6TB of DDR5 memory, and add an astonishing 16 NVMe U.2 drives. 

Advances Just Around the Corner

It seems like each new day brings stories about bold advances in AI. Apparently, our new robot friends may have the answer to some very human questions like, how can we cure our most insidious diseases? And how do we deal with the looming threat of climate crisis?

The AI models that could answer those questions—not to mention the ones that will help us find even better movies on Netflix—will require more power as they grow.

To meet those demands, AI server engineers are already experimenting with the next generation of advanced cooling for dense GPU clusters, enhanced hardware-based security, and new, more scalable modular infrastructure.

In fact, AI server designers have begun using their own AI models to create bigger and better AI servers. How very meta.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Meet Supermicro’s newest AI servers, powered by AMD Instinct MI350 Series GPUs

Featured content

Meet Supermicro’s newest AI servers, powered by AMD Instinct MI350 Series GPUs

Supermicro’s new AI servers are powered by a combination of AMD EPYC CPUs and AMD Instinct GPUs.

Learn More about this topic
  • Applications:
  • Featured Technologies:

Supermicro didn’t waste any time supporting AMD’s new Instinct MI350 Series GPUs. The same day AMD formally introduced the new GPUs, Supermicro announced two rack-mount servers that support them.

The new servers, members of Supermicro’s H14 generation of GPU optimized solutions, feature dual AMD EPYC 9005 CPUs along with the AMD Instinct MI350 series GPUs. They’re aimed at organizations looking to achieve a formerly tough combination: maximum performance at scale in their AI-driven data centers, but also a lower total cost of ownership (TCO).

To make the new servers easy to upgrade and scale, Supermicro has designed the new servers around its proven building-block architecture.

Here’s a quick look at the two new Supermicro servers:

4U liquid-cooled system with AMD Instinct MI355X GPU

This system, model number AS -4126GS-NMR-LCC, comes with a choice of dual AMD EPYC 9005 or 9004 Series CPUs, both with liquid cooling.

On the GPU front, users also have a choice of the AMD Instinct MI325X or brand-new AMD Instinct MI355X. Either way, this server can handle up to 8 GPUs.

Liquid cooling is provided by a single direct-to-chip cold plate. Further cooling comes from 5 heavy-duty fans and an air shroud.

8U air-cooled system with AMD Instinct MI350X GPU

This system, model number AS -8126GS-TNMR, comes with a choice of dual AMD EPYC 9005 or 9004 Series CPUs, both with air cooling.

This system also supports both the AMD Instinct MI325X and AMD Instinct MI350X GPUs. Also like the 4U server, this system supports up to 8 GPUs.

Air cooling is provided by 10 heavy-duty fans and an air shroud.

The two systems also share some features in common. These include PCIe 5.0 connectivity, large memory capacities (up to 2.3TB), and support for both AMD’s ROCm open-source software and AMD Infinity Fabric Link connections for GPUs.

“Supermicro continues to lead the industry with the most experience in delivering high-performance systems designed for AI and HPC applications,” says Charles Liang, president and CEO of Supermicro. “The addition of the new AMD Instinct MI350 series GPUs to our GPU server lineup strengthens and expands our industry-leading AI solutions and gives customers greater choice and better performance as they design and build the next generation of data centers.”

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

AMD presents its vision for the AI future: open, collaborative, for everyone

Featured content

AMD presents its vision for the AI future: open, collaborative, for everyone

Check out the highlights of AMD’s Advancing AI event—including new GPUs, software and developer resources.

Learn More about this topic
  • Applications:
  • Featured Technologies:

AMD advanced its AI vision at the “Advancing AI” event on June 12. The event, held live in the Silicon Valley city of San Jose, Calif., as well as online, featured presentations by top AMD executives and partners.

As many of the speakers made clear, AMD’s vision for AI is that it be open, developer-friendly, collaborative and useful to all.

AMD certainly believes the market opportunity is huge. During the day’s keynote, CEO Lisa Su said AMD now believes the total addressable market (TAM) for data-center AI will exceed $500 billion by as soon as 2028.

And that’s not all. Su also said she expects AI to move beyond the data center, finding new uses in edge computers, PCs, smartphone and other devices.

To deliver on this vision, Su explained, AMD is taking a three-pronged approach to AI:

  • Offer a broad portfolio of compute solutions.
  • Invest in an open development ecosystem.
  • Deliver full-stack solutions via investments and acquisitions.

The event, lasting over two hours, was also filled with announcements. Here are the highlights.

New: AMD Instinct MI350 Series

At the Advancing AI event, CEO Su formally announced the company’s AMD Instinct MI350 Series GPUs.

There are two models, the MI350X and MI355X. Though both are based on the same silicon, the MI355X supports higher thermals.

These GPUs, Su explained, are based on AMD’s 4th gen Instinct architecture, and each GPU comprises 10 chiplets containing a total of 185 billion transistors. The new Instinct solutions can be used for both AI training and AI inference, and they can also be configured in either liquid- or air-cooled systems.

Su said the MI355X delivers a massive 35x general increase in AI performance over the previous-generation Instinct MI300. For AI training, the Instinct MI355X offers up to 3x more throughput than the Instinct MI300. And in comparison with a leading competitive GPU, the new AMD GPU can create up to 40% more tokens per dollar.

AMD’s event also featured several representatives of companies already using AMD Instinct MI300 GPUs. They included Microsoft, Meta and Oracle.

Introducing ROCm 7 and AMD Developer Cloud

Vamsi Boppana, AMD’s senior VP of AI, announced ROCm 7, the latest version of AMD’s open-source AI software stack. ROCm 7 features improved support for industry-standard frameworks; expanded hardware compatibility; and new development tools, drivers, APIs and libraries to accelerate AI development and deployment.

Earlier in the day, CEO Su said AMD’s software efforts “are all about the developer experience.” To that end, Boppana introduced the AMD Developer Cloud, a new service designed for rapid, high-performance AI development.

He also said AMD is giving developers a 25-hour credit on the Developer Cloud with “no strings.” The new AMD Developer Cloud is generally available now.

Road Map: Instinct MI400, Helios rack, Venice CPU, Vulcano NIC

During the last segment of the AMD event, Su gave attendees a sneak peek at several forthcoming products:

  • Instinct MI400 Series: This GPU is being designed for both large-scale AI inference and training. It will be the heart of the Helios rack solution (see below) and provide what Su described as “the engine for the next generation of AI.” Expect performance of up to 40 petaflops, 432GB of HBM4 memory, and bandwidth of 19.6TB/sec.
  • Helios: The code name for a unified AI rack solution coming in 2026. As Su explained it, Helios will be a rack configuration that functions like a single AI engine, incorporating AMD’s EPYC CPU, Instinct GPU, Pensando Pollara network interface card (NIC) and ROCm software. Specs include up to 72 GPUs in a rack and 31TB of HBM3 memory.
  • Venice: This is the code name for the next generation of AMD EPYC server CPUs, Su said. They’ll be based on a 2nm form, feature up to 256 cores, and offer a 1.7x performance boost over the current generation.
  • Vulcano: A future NIC, it will be built using a 3nm form and feature speeds of up to 800Gb/sec.

Do More:

 

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Tech Explainer: What’s a NIC? And how can it empower AI?

Featured content

Tech Explainer: What’s a NIC? And how can it empower AI?

With the acceleration of AI, the network interface card is playing a new, leading role.

Learn More about this topic
  • Applications:
  • Featured Technologies:

The humble network interface card (NIC) is getting a status boost from AI.

At a fundamental level, the NIC enables one computing device to communicate with others across a network. That network could be a rendering farm run by a small multimedia production house, an enterprise-level data center, or a global network like the internet.

From smartphones to supercomputers, most modern devices use a NIC for this purpose. On laptops, phones and other mobile devices, the NIC typically connects via a wireless antenna. For servers in enterprise data centers, it’s more common to connect the hardware infrastructure with Ethernet cables.

Each NIC—or NIC port, in the case of an enterprise NIC—has its own media access control (MAC) address. This unique identifier enables the NIC to send and receive relevant packets. Each packet, in turn, is a small chunk of a much larger data set, enabling it to move at high speeds.

Networking for the Enterprise

At the enterprise level, everything needs to be highly capable and powerful, and the NIC is no exception. Organizations operating full-scale data centers rely on NICs to do far more than just send emails and sniff packets (the term used to describe how a NIC “watches” a data stream, collecting only the data addressed to its MAC address).

Today’s NICs are also designed to handle complex networking tasks onboard, relieving the host CPU so it can work more efficiently. This process, known as smart offloading, relies on several functions:

  • TCP segmentation offloading: This breaks big data into small packets.
  • Checksum offloading: Here, the NIC independently checks for errors in the data.
  • Receive side scaling: This helps balance network traffic across multiple processor cores, preventing them from getting bogged down.
  • Remote Direct Memory Access (RDMA): This process bypasses the CPU and sends data directly to GPU memory.

Important as these capabilities are, they become even more vital when dealing with AI and machine learning (ML) workloads. By taking pressure off the CPU, modern NICs enable the rest of the system to focus on running these advanced applications and processing their scads of data.

This symbiotic relationship also helps lower a server’s operating temperature and reduce its power usage. The NIC does this by increasing efficiency throughout the system, especially when it comes to the CPU.

Enter the AI NIC

Countless organizations both big and small are clamoring to stake their claims in the AI era. Some are creating entirely new AI and ML applications; others are using the latest AI tools to develop new products that better serve their customers.

Either way, these organizations must deal with the challenges now facing traditional Ethernet networks in AI clusters. Remember, Ethernet was invented over 50 years ago.

AMD has a solution: a revolutionary NIC it has created for AI workloads, the AMD AI NIC card. Recently released, this NIC card is designed to provide the intense communication capabilities demanded by AI and ML models. That includes tightly coupled parallel processing, rapid data transfers and low-latency communications.

AMD says its AI NIC offers a significant advancement in addressing the issues IT managers face as they attempt to reconcile the broad compatibility of an aging network technology with modern AI workloads. It’s a specialized network accelerator explicitly designed to optimize data transfer within back-end AI networks for GPU-to-GPU communication.

To address the challenges of AI workloads, what’s needed is a network that can support distributed computing over multiple GPU nodes with low jitter and RDMA. The AMD AI NIC is designed to manage the unique communication patterns of AI workloads and offer high throughput across all available links. It also offers congestion avoidance, reduced tail latency, scalable performance, and fast job-completion times.

Validated NIC

Following rigorous validation by the engineers at Supermicro, the AMD AI NIC is now supported on the Supermicro 8U GPU Server (AS -8126GS-TNMR). This behemoth is designed specifically for AI, deep learning, high-performance computing (HPC), industrial automation, retail and climate modeling.

In this configuration, AMD’s smart AI-focused NIC can offload networking tasks. This lets the Supermicro SuperServer’s dual AMD EPYC 9000-series processors run at even higher efficiency.

In the Supermicro server, the new AMD AI NIC occupies one of the myriad PCI Express x16 slots. Other optional high-performance PCIe cards include a CPU-to-GPU interconnect and up to eight AMD Instinct GPU accelerators.

In the NIC of time

A chain is only as strong as its weakest link. The chain that connects our ever-expanding global network of AI operations is strengthened by the advent of NICs focused on AI.

As NICs grow more powerful, these advanced network interface cards will help fuel the expansion of the AI/ML applications that power our homes, offices, and everything in between. They’ll also help us bypass communication bottlenecks and speed time to market.

For SMBs and enterprises alike, that’s good news indeed.

Do More:

1

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Oil & gas spotlight: Fueling up with AI

Featured content

Oil & gas spotlight: Fueling up with AI

AI is helping industry players that include BP, Chevron and Shell automate a wide range of important use cases. To serve them, AMD and Supermicro offer powerful accelerators and servers.

Learn More about this topic
  • Applications:
  • Featured Technologies:

What’s artificial intelligence good for? For managers in the oil and gas industry, quite a lot.

Industry players that include Shell, BP, ExxonMobil and Chevron are already using machine learning and AI. Use cases include predictive maintenance, seismic data analysis, reservoir management and safety monitoring, says a recent report by Chirag Bharadwaj of consultants Appinventiv.

AI’s potential benefits for oil and gas companies are substantial. Anurag Jain of AI consultants Oyelabs cites estimates of AI lowering oil production costs by up to $5 a barrel with a 25% productivity gain, and increasing oil reserves by as much as 20% with enhanced resource recovery.

Along the same lines is a recent report from market watcher Global Growth Insights. It says adoption of AI in North American oil shale drilling has increased production efficiency by an impressive 20%.

All this has led Jain of Oyelabs to expect a big increase in the oil and gas industry’s AI spend. He predicts the industry’s worldwide spending on AI will rise from $3 billion last year to nearly $5.3 billion in 2028.

Assuming Jain is right, that would put the oil and gas industry’s AI spend at about 15% of its total IT spend. Last year, the industry spent nearly $20 billion on all IT goods and services worldwide, says Global Growth Insights.

Powerful Solutions

All this AI activity in the oil and gas industry hasn’t passed the notice of AMD and Supermicro. They’re on the case.

AMD is offering the industry its AMD Instinct MI300A, an accelerator that combines CPU cores and GPUs to fuel the convergence of high-performance computing (HPC) with AI. And Supermicro is offering rackmount servers driven by this AMD accelerator.

Here are some of the benefits the two companies are offering oil and gas companies:

  • An APU multi-chip architecture that enables dense compute, high-bandwidth memory integration, and chips for both CPU and GPU all in one.
  • Up to 2.6x the HPC performance/watt vs. the older AMD Instinct MI250X.
  • Up to 5.1x the AI-training workload performance with INT8 vs. the AMD Instinct MI250X. (INT8 is a fixed-point representation using 8 bits.)
  • Up to 128GB of unified HBM3 memory dedicated to GPUs. (HBM3 is a high-bandwidth memory chip technology that offers increased bandwidth, memory capacity and power efficiency, all in a smaller form factor.)
  • Double-precision power up to 122.6 TFLOPS with FP64 matrix HPC performance. (FP64 is a double-precision floating point format using 64 bits in memory.)
  • Complete, pre-validated solutions that are ready for rack-scale deployment on day one. These offer the choice of either 2U (liquid cooled) or 4U (air cooled) form factors.
     

If you have customers in oil and gas looking to get into AI, tell them about these Supermicro and AMD solutions.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Healthcare in the spotlight: Big challenges, big tech

Featured content

Healthcare in the spotlight: Big challenges, big tech

To meet some of their industry’s toughest challenges, healthcare providers are turning to advanced technology.

Learn More about this topic
  • Applications:
  • Featured Technologies:

Healthcare providers face some tough challenges. Advanced technology can help.

As a recent report from consultants McKinsey & Co. points out, healthcare providers are dealing with some big challenges. These include rising costs, workforce shortages, an aging population, and increased competition from nontraditional parties.

Another challenge: Consumers expect their healthcare providers to offer new capabilities, such as digital scheduling and telemedicine, as well as better experiences.

One way healthcare providers hope to meet these two challenge streams is with advanced technology. Three-quarters of U.S. healthcare providers increased their IT spending in the last year, according to a survey conducted by consultants Bain & Co. The same survey found that 15% of healthcare providers already have an AI strategy in place, up from just 5% who had a strategy in 2023.

Generative AI is showing potential, too. Another survey, this one done by McKinsey, finds that over 70% of healthcare organizations are now either pursuing GenAI proofs-of-concept or are already implementing GenAI solutions.

Dynamic Duo

There’s a catch to all this: As healthcare providers adopt AI, they’re finding that the required datasets and advanced analytics don’t run well on their legacy IT systems.

To help, Supermicro and AMD are working together. They’re offering healthcare providers heavy-duty compute delivered at rack scale.

Supermicro servers powered by AMD Instinct MI300X GPUs are designed to accelerate AI and HPC workloads in healthcare. They offer the levels of performance, density and efficiency healthcare providers need to improve patient outcomes.

The AMD Instinct MI300X is designed to deliver high performance for GenAI workloads and HPC applications. It’s designed with no fewer than 304 high-throughput compute units. You also get AI-specific functions and 192GB of HBM3 memory, all of it based on AMD’s CDNA 3 architecture.

Healthcare providers can use Supermicro servers powered by AMD GPUs for next-generation research and treatments. These could include advanced drug discovery, enhanced diagnostics and imaging, risk assessments and personal care, and increased patient support with self-service tools and real-time edge analytics.

Supermicro points out that its servers powered by AMD Instinct GPUs deliver massive compute with rack-scale flexibility, as well as high levels of power efficiency.

Performance:

  • The powerful combination of CPUs, GPUs and HBM3 memory accelerates HPC and AI workloads.
  • HBM3 memory offers capacities of up to 192GB dedicated to the GPUs.
  • Complete solutions ship pre-validated, ready for instant deployment.
  • Double-precision power can serve up to 163.4 TFLOPS.

Flexibility:

  • Proven AI building-block architecture streamlines deployment at scale for the largest AI models.
  • An open AI ecosystem with AMD ROCm open software.
  • A unified computing platform with AMD Instinct MI300X plus AMD Infinity fabric and infrastructure.
  • Thanks to a modular design and build, users move faster to the correct configuration.

Efficiency:

  • Dual-zone cooling innovation, used by some of the most efficient supercomputers on the Green500 supercomputer list.
  • Improved density with 3rd Gen AMD CDNA, delivering 19,456 stream cores.
  • Chip-level power intelligence enables the AMD Instinct MI300X to deliver big power performance.
  • Purpose-built silicon design of the 3rd Gen AMD CDNA combines 5nm and 6nm fabrication processes.

Are your healthcare clients looking to unleash the potential of their data? Then tell them about Supermicro systems powered by the AMD MI300X GPUs.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

AI across AMD’s entire portfolio? Believe it!

Featured content

AI across AMD’s entire portfolio? Believe it!

A little over a year ago, AMD CTO Mark Papermaster said the company’s strategy was to offer AI everywhere. Now learn how AMD, with help from Supermicro, is bringing this strategy to life.

Learn More about this topic
  • Featured Technologies:

A year in the fast-moving world of artificial intelligence can seem like a lifetime.

Consider:

  • A year ago, ChatGPT had fewer than 200 million weekly active users. Now this Generative AI tool has 400 million weekly users, according to developer OpenAI.
  • A year ago, no one outside of China had heard of DeepSeek. Now its GenAI chatbot is disrupting the AI industry, challenging the way some mainstream tools function.
  • About a year ago, AMD CTO Mark Papermaster said his company’s new strategy called for AI across the entire product portfolio. Now AMD, with help from Supermicro, offers AI power for the data center, cloud and desktop. AMD also offers a robust open AI stack.

‘We’re Thrilled’

AMD’s Papermaster made his comments in Feb. 2024 during a fireside chat hosted by stock research firm Arete Research.

During the interview, CTO Papermaster acknowledged that most early customers for AMD’s AI hardware were mostly big cloud hyperscalers, including AWS, Google Cloud and Microsoft Azure. But he also said new customers are coming, including both enterprises and individual endpoint users.

“We’re thrilled to bring AI across our entire portfolio,” Papermaster said.                                                                          

So how has AMD done? According to the company’s financial results for both the fourth quarter and the full year 2024, pretty good.

Aggressive Investments

During AMD’s recent report on its Q4:24 and full-year ’24 financial results, CFO Jean Hu mentioned that the company is “investing aggressively in AI.” She wasn’t kidding, as the following items show:

  • AMD is accelerating its AI software road map. The company released ROCm 6.3, which includes enhancements for faster AI inferencing on AMD Instinct GPUs. The company also shared an update on its plans for the ROCm software stack.
  • AMD announced a new GPU system in 2024, the AMD Instinct MI325X. Designed for GenAI performance, it’s built on the AMD CDNA3 architecture and offers up to 256GB of HBM3E memory and up to 6TB/sec. of bandwidth.
  • To provide a scalable AI infrastructure, AMD has expanded its partnerships. These partnerships involve companies that include Aleph, IBM, Fujitsu and Vultr. IBM, for one, plans to deploy AMD MI300X GPUs to power GenAI and HPC applications on its cloud offering.
  • AMD is offering AI power for PCs. The company added AI capabilities to its Ryzen line of processors. Dell, among other PC vendors, has agreed to use these AMD CPUs in its Dell Pro notebook and desktop systems.

Supermicro Servers

AMD partner Supermicro is on the AI case, too. The company now offers several AMD-powered servers designed specifically for HPC and AI workloads.

These include an 8U 8-GPU system with AMD Instinct MI300X GPUs. It’s designed to handle some of the largest AI and GenAI models.

There’s also a Supermicro liquid-cooled 2U 4-way server. This system is powered by the AMD Instinct MI300A, which combines CPUs and GPUs, and it’s designed to support workloads that coverge HPC and AI.

Put it all together, and you can see how AMD is implementing AI across its entire portfolio.

Do More:

 

Featured videos


Events


Find AMD & Supermicro Elsewhere

Pages